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Abstract. The finite nuclear size effect on the hyperfine splitting of low-Z hydrogen-like atoms is studied in
the external field approximation. A simple non-relativistic formula is proposed which expresses the nuclear
size correction to the hyperfine splitting in terms of moments of the nuclear charge and magnetization
distribution. The numerical results obtained via this formula are compared with corresponding results
derived by means of the Zemach formula. A relativistic formula for the nuclear size correction to the
hyperfine splitting is also derived.

PACS. 31.30.Jv Relativistic and quantum electrodynamic effects in atoms and molecules –
31.30.Gs Hyperfine interactions and isotope effects, Jahn-Teller effect

1 Introduction

At present, the experimental value of the ground state
hyperfine splitting in hydrogen is known with a relative
accuracy of about 10−13 [1,2]. This accuracy is by seven
orders of magnitude higher than the accuracy of the corre-
sponding theoretical prediction [3,4]. The theoretical un-
certainty is mainly determined by the uncertainty of the
leading nuclear size correction. For s states, this correction
is generally evaluated by means of the Zemach formula [5]

∆ENS = ∆E0

(
−2αZm

∫
d3r d3r′ ρe(r)ρm(r′)|r − r′|

)
.

(1)
Here ρe(r) and ρm(r) denote the nuclear charge and mag-
netization distribution densities normalized to∫

d3r ρe(r) =
∫

d3r ρm(r) = 1 (2)

and ∆E0 is the non-relativistic hyperfine splitting energy.
Formula (1) can be used to calculate the nuclear size cor-
rection in non-relativistic external field approximation for
any given model of the nuclear charge and magnetization
distribution [3,4,6,7]. It would be desirable, however, to
have a formula at hand which expresses the ∆ENS correc-
tion directly in terms of moments of the nuclear charge
and magnetization distribution. In the present paper we
derive a formula which achieves this goal. In the external
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field approximation, the corresponding relativistic formula
is also derived.

It is well-known (see, e.g., Ref. [3]) that the Zemach
correction cancels in a specific difference Dn1 =
n3∆E(ns)−∆E(1s), where ∆E(ns) is the hyperfine split-
ting of the ns state. For n = 2, this difference is known ex-
perimentally for hydrogen [8], deuterium [9], and the 3He+

ion [10] and may be calculated with a high accuracy [3,4].
Significant progress in improving the theoretical accuracy
of D21 has been made recently by evaluating the higher-
order corrections to the one-loop self-energy contribution
[11] and to the one-loop vacuum-polarization contribution
[4,12]. At present, one of the major sources for the theoret-
ical uncertainty of D21 is due to the relativistic correction
to the Zemach formula. In references [3,4], this correction
has been evaluated to lowest order in αZ and mRE/M,
where RE/M denotes the nuclear electric/magnetic radius,
respectively. A dominant nuclear contribution to D21 re-
sults from the (αZ)2 correction, which has been evaluated
in references [3,4] by taking into account the relativistic
correction to the Schrödinger wave function at the nucleus.
In the present paper we rederive this correction in a more
systematic way.

Relativistic and Heaviside units, where � = c = 1 and
α = e2/(4π), are used throughout the paper.

2 The first-order hyperfine splitting

The interaction of the electron with the magnetic field in-
duced by a non-zero nuclear magnetic moment leads to the
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hyperfine splitting of the atomic levels. In the point-dipole
approximation this interaction is given by the Fermi-Breit
operator

Hµ =
|e|
4π

(α · [µ × r])
r3

, (3)

where µ is the nuclear magnetic moment operator and α is
the vector of the Dirac matrices. To evaluate the hyperfine
splitting in a hydrogen-like atom to first order, we have to
average the Fermi-Breit operator with unperturbed wave
functions of the atomic system. In the case of a point
nucleus, this yields [13]

∆E =
|e|
4π

µ

I

κ

j(j + 1)
(αZ)3[2κ(γ + nr) −N ]m2

N4γ(4γ2 − 1)
×[F (F + 1) − I(I + 1) − j(j + 1)] , (4)

where F is the total angular momentum of the atom, I
and j are the nuclear and electronic angular momenta, re-
spectively, nr = n−|κ| is the radial quantum number, n is
the principal quantum number, κ = (−1)j+l+1/2(j + 1/2)
is the relativistic angular momentum quantum number,
l = j ± 1/2 determines the parity of the state, γ =√
κ2 − (αZ)2, N =

√
n2

r + 2nrγ + κ2, and m is the elec-
tron mass. In the next sections we will consider the nuclear
size corrections to this splitting. We will assume the nu-
clear charge and magnetization distributions to be spher-
ically symmetric, i.e. ρe(r) = ρe(r) and ρm(r) = ρm(r).

3 Nuclear charge distribution correction

For low-Z hydrogen-like atoms, the nuclear charge distri-
bution correction to the hyperfine splitting can be evalu-
ated by perturbation theory,

∆Eext.ch. = 2
εN �=εA∑

N

〈A|δVch|N〉〈N |Hµ|A〉
εA − εN

, (5)

where |A〉 and |N〉 are the states of the total atomic system
(electron plus nucleus), δVch is the difference between the
potentials of an extended and a point-charge nucleus, re-
spectively, εA and εN denote the Dirac-Coulomb energies.
Taking into account that δVch is a spherically symmetric
potential, we can easily integrate over the angles. As a
result of this integration, we have

∆Eext.ch. =
|e|
4π

µ

I
[F (F + 1) − I(I + 1)−j(j + 1)]

κ

j(j + 1)

×
n′ �=n∑

n′

〈nκ|δVch|n′κ〉〈n′κ|σx

r2
|nκ〉

εnκ − εn′κ
, (6)

where the two-component vector |nκ〉 is defined by

|nκ〉 =
(
rgnκ(r)
rfnκ(r)

)

with gnκ and fnκ being the upper and lower radial com-
ponents of the Dirac wave function as defined in refer-
ence [14]. σx, σy , σz are the Pauli matrices acting in the
space of the two-component vectors and the scalar prod-
uct of the two-component vectors is defined by

〈a|b〉 =
∫ ∞

0

dr r2(gagb + fafb) . (7)

The sum

|ξ〉 =
n′ �=n∑

n′

|n′κ〉〈n′κ|σx

r2 |nκ〉
εnκ − εn′κ

(8)

can be calculated by employing the generalized virial re-
lations for the Dirac equation [15]. Such a calculation
yields [16]

|ξ〉 =
1

4(αZ)2 + (1 − 4κ2)

×
{
2αZ

σx

r
+ 4αZκi

σy

r
+ (1 − 4κ2)

σz

r
− 2(αZ)3κm

N3γ

− 1 − 4κ2

κ
(εnκiσy +mσx)

}
|nκ〉

− 2αZ(2εnκ −m/κ)
4(αZ)2 + (1 − 4κ2)

d
dκ

|nκ〉· (9)

When evaluating matrix elements with δVch(r), which de-
viates from zero only inside the nucleus, the radial func-
tion |ξ〉 as well as |nκ〉 can be approximated by the lowest
order term of the series expansion in powers of r. (In par-
ticular, it means that the last term in equation (9) can be
omitted.) Accordingly, we have to evaluate the integral

I =
∫

d3r rβδVch . (10)

Employing the identity

rβ =
1

(β + 2)(β + 3)
∆rβ+2 , (11)

where ∆ is the Laplacian, and integrating by parts, we
obtain

I =
∫

d3r
∆rβ+2

(β + 2)(β + 3)
δVch

=
∫

d3r
rβ+2

(β + 2)(β + 3)
∆(δVch). (12)

By means of the Poisson equation

∆(δVch(r)) = 4παZ[ρe(r) − δ(r)] , (13)

we derive

I = 4παZ
〈rβ+2〉e

(β + 2)(β + 3)
, (14)
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Table 1. The nuclear charge distribution correction δe, in %, for the 1s state, calculated by means of formulas (15, 17, 18, 20).

For comparison, the results of a more accurate numerical calculation [17] are given in the seventh column. The values for 〈r2〉1/2
e

are taken from [18–20].

Z 〈r2〉1/2
e [fm] Eq. (18) Eq. (17) Eq. (15) Eq. (20) Ref. [17]

1 0.862 0.00315 0.00315 0.00315 0.00315 0.00315

5 2.452 0.0449 0.0456 0.0456 0.0455 0.0455

10 2.967 0.109 0.115 0.115 0.114 0.114

15 3.190 0.175 0.197 0.198 0.193 0.194

20 3.495 0.256 0.309 0.316 0.301 0.306

where 〈rβ〉e =
∫

d3r rβρe(r). Thus the nuclear charge
distribution correction (6) takes the form

∆Eext.ch. =
|e|
4π

µ

I
[F (F + 1) − I(I + 1) − j(j + 1)]

× κ

j(j + 1)
Γ (2γ + nr + 1)
Γ 2(2γ + 1)nr!

×
{
2αZ

√
m2 − ε2nκ(n2

r − (N − κ)2)

+ (1 − 4κ2)[εnκ(n2
r + (N − κ)2) − 2nrm(N − κ)]

}

×
(

2αZ
N

)2γ+1
αZm2γ

(4(αZ)2 + (1 − 4κ2))4N(N − κ)
〈r2γ−1〉e
γ(2γ − 1)

,

(15)

where Γ (x) is the gamma function. For low-Z atoms it
is convenient to express this correction in terms of δe de-
fined by

∆Eext.ch. = −∆E0δe , (16)

where ∆E0 denotes the non-relativistic hyperfine splitting
energy. Keeping the two lowest-order terms in αZ, equa-
tion (15) yields for the s states

δ(s)e = 2αZm〈r〉e
{

1 + (αZ)2
[
2ψ(3) − ψ(n+ 1)

− log

(
2αZ
n

)
− 〈r log (mr)〉e

〈r〉e +
8n− 9
4n2

+
11
4

]}
,

(17)

where ψ(x) = d
dx logΓ (x). The non-relativistic limit is

given by

δ(s)nr
e = 2αZm〈r〉e . (18)

For the p 1
2

states, one easily finds in the non-relativistic
limit

δ
(p 1

2
)nr

e =
3
2
(αZ)3m〈r〉e n

2 − 1
n2

· (19)

Formulas (18, 19) coincide with the related expressions
derived in [17] for the case of a homogeneously charged
sphere, while the relativistic n-independent term in for-
mula (17) differs from the corresponding term that can

Table 2. The nuclear charge distribution correction δe, in %,
for the 2s state, calculated by means of formulas (15, 17, 18,
20). For comparison, the results of a more accurate numeri-
cal calculation [17] are given in the sixth column. The values

for 〈r2〉1/2
e are the same as in Table 1.

Z Eq. (18) Eq. (17) Eq. (15) Eq. (20) Ref. [17]

1 0.00315 0.00315 0.00315 0.00315 0.00315

5 0.0449 0.0456 0.0456 0.0455 0.0455

10 0.109 0.115 0.116 0.114 0.114

15 0.175 0.198 0.200 0.195 0.197

20 0.256 0.314 0.322 0.305 0.311

Table 3. The nuclear charge distribution correction δe, in %,
for the 2p 1

2
state, calculated by means of formulas (15, 19). For

comparison, the results of a more accurate numerical calcula-

tion [17] are given in the fourth column. The values for 〈r2〉1/2
e

are the same as in Table 1. The symbol [−n] means ×10−n.

Z Eq. (19) Eq. (15) Ref. [17]

1 0.945[−7] 0.945[−7] 0.945[−7]

5 0.336[−4] 0.342[−4] 0.342[−4]

10 0.325[−3] 0.347[−3] 0.344[−3]

15 0.118[−2] 0.136[−2] 0.133[−2]

20 0.306[−2] 0.390[−2] 0.377[−2]

be derived from the formulas presented in [17]. Since, for
the sphere model, the approach developed in [17] pro-
vides a more accurate evaluation of the nuclear size cor-
rection than the perturbation theory considered here, for-
mula (17) can be improved by replacing the relativistic
n-independent term with the corresponding term derived
from [17]. As a result, we obtain

δ(s)e = 2αZm〈r〉e
{

1 + (αZ)2
[
2ψ(3) − ψ(n+ 1)

− log

(
2αZ
n

)
− 〈r log (mr)〉e

〈r〉e +
8n− 9
4n2

+
839
750

]}
· (20)

Formulas (17, 20) differ only by the last constant term.
In Tables 1, 2, and 3 we present numerical values of

δe as calculated according to equations (15–20) and com-
pare them with the results of a more accurate numerical
evaluation [17]. All the calculations are performed for the
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Table 4. The nuclear magnetization distribution correction δm, in %, for the 1s and 2s states, as calculated via formulas (26, 27).
The sphere model is employed for the nuclear charge and magnetization distributions. For comparison, the results of a more

accurate numerical calculation [17] are given in the fifth and eighth columns. The values for 〈r2〉1/2
e are taken from [18–20].

Z 〈r2〉1/2
e/m [fm] 1s, Eq. (27) 1s, Eq. (26) 1s, [17] 2s, Eq. (27) 2s, Eq. (26) 2s, [17]

1 0.862 0.00117 0.00117 0.00117 0.00117 0.00117 0.00117

5 2.452 0.0167 0.0169 0.0169 0.0167 0.0169 0.0169

10 2.967 0.0403 0.0419 0.0420 0.0403 0.0421 0.0422

15 3.190 0.0650 0.0705 0.0709 0.0650 0.0712 0.0716

20 3.495 0.0950 0.108 0.110 0.0950 0.110 0.112

homogeneously charged sphere model of the nuclear
charge distribution.

4 Nuclear magnetization distribution
correction

For low-Z atoms the nuclear magnetization distribution
correction can be written as

∆Eext.mag. = −∆E
∫

d3r K(r)ρm(r) , (21)

where ∆E is given by equation (4), ρm(r) is the nuclear
magnetization distribution density, and K(r) is defined by

K(r) =

∫ r

0

dr′ fnκ(r′)gnκ(r′)∫ ∞

0

dr′ fnκ(r′)gnκ(r′)
· (22)

In order to derive an analytical expression for this cor-
rection, we will employ the sphere model for the nuclear
charge distribution, with a radius R0 =

√
5/3〈r2〉1/2

e ,
keeping the lowest-order term in mR0 and the two lowest-
order terms in αZ. For the s states, the function K(r) is
given by [17]

K(s)(r) = αZmR0

(
r2

R2
0

− r4

10R4
0

)
+ (αZ)3mR0

×
{[

2Ψ(3) − Ψ(n+ 1) − log
(

2αZmR0

n

)

− 112n2 − 30n+ 25
60n2

](
r2

R2
0

− r4

10R4
0

)

− 1
5

(
3r4

2R4
0

− 19r6

42R6
0

+
19r8

360R8
0

− 2
825

r10

R10
0

)}
·

(23)

Although equation (23) holds strictly only for r ≤ R0, it
yields a reasonably good approximation for K(s)(r) in the
region R0 < r < 2R0 as well. Introducing δm via

∆Eext.mag. = −∆E0δm, (24)

we easily find

δm =
∆E

∆E0

∫
d3r K(r)ρm(r). (25)

Substituting (23) into (25), we obtain to first order inmR0

and to two lowest orders in αZ

δ(s)m = αZmR0

(
〈r2〉m
R2

0

− 〈r4〉m
10R4

0

)
+ (αZ)3mR0

×
{[

2Ψ(3) − Ψ(n+ 1) − log

(
2αZmR0

n

)

+
8n− 9
4n2

− 1
30

]( 〈r2〉m
R2

0

− 〈r4〉m
10R4

0

)

− 1
5

(
3〈r4〉m
2R4

0

−19〈r6〉m
42R6

0

+
19〈r8〉m
360R8

0

− 2
825

〈r10〉m
R10

0

)}
·

(26)

In the non-relativistic approximation, we have

δ(s)nr
m = αZmR0

( 〈r2〉m
R2

0

− 1
10

〈r4〉m
R4

0

)
· (27)

In Table 4 we present numerical results for δm and com-
pare them with the more accurate numerical results ob-
tained in [17]. The sphere model has been used for the
nuclear charge and magnetization distributions. As one
can see from the table, formula (26) properly accounts for
the relativistic effects.

Formulas (26, 27) are derived for the homogeneously
charged sphere model of the nuclear charge distribution.
However, they also yield sufficiently accurate results for
other models of the nuclear charge distribution (with
R0 =

√
5/3〈r2〉1/2

e ), which are close enough to the ho-
mogeneously charged sphere model.

5 Discussion

According to the formulas derived above, the total finite
nuclear size correction to the hyperfine splitting of an ns
state in a low-Z hydrogen-like atom is given by

∆ENS = ∆Eext.ch. +∆Eext.mag. = −∆E0(δe + δm), (28)



A.V. Volotka et al.: Nuclear size correction to the hyperfine splitting in low-Z hydrogen-like atoms 55

Table 5. The total nuclear size correction δe + δm, expressed in %, for the s states, calculated by means of formula (30).
The sphere model is used for the nuclear charge distribution together with four different models for the nuclear magnetization
distribution as described in the text. For comparison, the corresponding results derived from the Zemach formula [5] are presented

as well. The values for 〈r2〉1/2
e are taken from [18–20]. The values for 〈r2〉1/2

m are assumed to be equal to the corresponding

values for 〈r2〉1/2
e .

Z 〈r2〉1/2

e/m [fm] S S [5] SS SS [5] E E [5] G G [5]

1 0.862 0.00433 0.00433 0.00434 0.00434 0.00423 0.00425 0.00429 0.00429

2 1.844 0.0185 0.0185 0.0186 0.0186 0.0181 0.0182 0.0184 0.0184

3 2.39 0.0360 0.0360 0.0361 0.0361 0.0352 0.0353 0.0357 0.0357

5 2.452 0.0615 0.0615 0.0617 0.0617 0.0601 0.0604 0.0610 0.0610

10 2.967 0.149 0.149 0.149 0.149 0.145 0.146 0.148 0.148

where

δ(s)e + δ(s)m = (δ(s)nr
e + δ(s)nr

m )

{
1 + (αZ)2

[
2Ψ(3)

− Ψ(n+ 1) − log

(
2αZ
n

)
+

8n− 9
4n2

]}

− δ(s)nr
m (αZ)2

(
log (mR0) +

1
30

)

− δ(s)nr
e (αZ)2

(
〈r log (mr)〉e

〈r〉e − 839
750

)

− (αZ)3mR0

5

(
3〈r4〉m
2R4

0

− 19〈r6〉m
42R6

0

+
19〈r8〉m
360R8

0

− 2
825

〈r10〉m
R10

0

)
· (29)

The corresponding non-relativistic approximation is
given by

δ(s)nr
e + δ(s)nr

m = 2αZm〈r〉e
+ αZmR0

( 〈r2〉m
R2

0

− 1
10

〈r4〉m
R4

0

)
· (30)

To compare this non-relativistic formula with the Zemach
expression, let us consider the following models for the
nuclear magnetization distribution:

1. the sphere model (S model)

ρm(r) =
θ(R0 − r)

4
3πR

3
0

, (31)

2. the spherical shell model (SS model)

ρm(r) =
δ(R0 − r)

4πR2
0

, (32)

3. an exponential distribution (E model)

ρm(r) =
Λ3

8π
e−Λr , (33)

4. a Gaussian distribution (G model)

ρm(r) =
Λ

3
2

2πΓ (3
2 )

e−Λr2
. (34)

In Table 5 we present the non-relativistic values for the
total nuclear size correction employing the sphere model
of the nuclear charge distribution together with various
models of the nuclear magnetization distributions as cal-
culated by means of equation (30). For comparison, the
results obtained by the Zemach formula are also presented
in the table. As one can see from the table, the results de-
rived by formula (30) are in very good agreement with the
Zemach values. It can be shown that a slight difference be-
tween the Zemach results and our non-relativistic results,
as it appears, e.g., for the E model, is determined by the
integral

∆δ(s)nr
m = 8π

αZ

R3
0

∫ ∞

R0

dr ρm(r)r

×
(1

5
R5

0 −
3
4
rR4

0 + r2R3
0 −

1
2
r3R2

0 +
1
20
r5
)
.

(35)

Performing similar calculations employing other mod-
els for the nuclear charge distribution (with R0 =√

5/3〈r2〉1/2
e ) and comparing the corresponding results

with the Zemach ones, again a good agreement is obtained
for models of the nuclear charge distribution that are close
to the sphere model. In particular, it follows that for all
these models the relativistic correction to the Zemach for-
mula can be determined by equation (29) with a good
accuracy.

To compare the n-dependent terms in formula (29)
with those in references [3,4], we consider the difference

DNS
n1 = n3∆E

(ns)
NS −∆E

(1s)
NS . (36)

From equation (29), we derive

DNS
n1 = (αZ)2

(
Ψ(n+ 1) − Ψ(2) − logn− (n− 1)(n+ 9)

4n2

)

×∆E
(1s)
0 (δ(s)nr

e + δ(s)nr
m ). (37)
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Here ∆E
(1s)
0 is the ground-state hyperfine splitting ob-

tained from the non-relativistic theory. This expression
exactly coincides with the corresponding formula derived
in references [3,4]

In conclusion, we derived relativistic and non-
relativistic formulas which express the nuclear size cor-
rection to the hyperfine splitting in terms of moments of
the nuclear charge and magnetization distributions. Al-
though the magnetization distribution correction has been
derived employing the sphere model for the nuclear charge
distribution, to a good accuracy, the formulas may also ap-
ply for other models that are close enough to the sphere
model.

We thank I.I. Tupitsyn for providing us with the numeri-
cal results for the nuclear charge distribution correction ob-
tained by a direct solution of the Dirac equation. Valuable
conversations with T. Beier and S. Karshenboim are grate-
fully acknowledged. This work was supported in part by RFBR
(Grant No. 01-02-17248), by the program “Russian Universi-
ties” (Grant No. UR.01.01.072), by DAAD, and by GSI.
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